

 Apryse Community

 Unit testing with WebViewer

 Technical Support

 WebViewer

 text,
 web-viewer

 ben

 May 5, 2022, 5:16pm

 1

 Hello,

I’m currently working on a proof-of-concept that involves using PDFTron for viewing and signing PDFs.

I’m working on creating some unit tests related to parsing the PDF for particular values, but I’m not sure how to setup the tests. Below is a sample of where I’m currently at with it. When I run the test, the Jest timeout is always reached, regardless of how long I set the timeout to be.

import WebViewer, { WebViewerInstance, WebViewerOptions } from "@pdftron/webviewer";
import "jest-canvas-mock";
import { extractTitle } from "./parser";

const testPdfPath = "./public/files/sample1.pdf";

async function setupInstance(): Promise<WebViewerInstance> {
 const options: WebViewerOptions = {
 filename: "sample.pdf",
 fullAPI: true,
 initialDoc: testPdfPath,
 loadAsPDF: true,
 path: testPdfPath,
 };
 const div = document.createElement("div");
 const instance = await WebViewer(options, div);

 return instance;
}

describe("extractTitle", () => {
 it("correctly finds the title of a simple document", async () => {
 // Arrange
 const expected = "PDFTron Sample PDF Text Tag Document 2";
 const instance = await setupInstance();
 const doc = await instance.Core.documentViewer.getDocument().getPDFDoc();
 const page = await doc.getPage(1);
 const txt = await instance.Core.PDFNet.TextExtractor.create();
 const rect = await page.getCropBox();

 txt.begin(page, rect);
 const line = await txt.getFirstLine();
 const docTitle = "";
 const parsedData = {};

 // Act
 const actual = await extractTitle(line, docTitle, parsedData);

 // Assert
 expect(actual).toEqual(expected);
 });
});

Is there a sample web repository that includes unit tests that I could reference?

Thanks,

Ben

 Unit testing with viewerless UI and jest

 Highlight content within PDF rendered through PDFTron

 system

 May 5, 2022, 5:16pm

 2

 Hello, I’m Ron, an automated tech support bot [image: :robot:]

While you wait for one of our customer support representatives to get back to you, please check out some of these documentation pages:
Guides:	Inside WebViewer
	Convert MS Office (Word, Excel, PowerPoint) to PDF using JavaScript - Setup
	Core engine for WebViewer - Creating your own UI using WebViewer Core
	Client-side JavaScript - Full PDFTron API

APIs:	Core - officeOptions
	UseDownloader
	WebViewerInstance - new WebViewerInstance()

Forums:	How to remove border overlapping on area and annotation?
	What is the propose of signature tab?
	Annotation has InReplyTo field that points to a non existing annotation

 Andrew_Yip

 May 6, 2022, 7:54pm

 3

 Hello Ben,

Do you know what line the code stop working on? I think the issue is you are passing WebViewer an element that doesn’t exist in the DOM yet. I think you’ll need to do something like

 const div = document.createElement('div');
 div.id = 'test'
 document.querySelector('body').appendChild(div);
 const instance = await WebViewer(options, div);

and after each test you’ll need to clean up by deleteing that element from the DOM.

Besides that, another possible issue I see is you might be calling “getPDFDoc” before the document has been loaded, so you’ll need to change your test to wait for the documentLoaded event.

documentLoaded

Please let me know if the above helps or if you have any other questions

Best Regards,

Andrew Yip

Software Developer

PDFTron Systems, Inc.

www.pdftron.com

 Property 'getPathData' does not exist on type 'Element'

 ben

 May 6, 2022, 9:23pm

 4

 Hello Andrew,

Thanks for taking a look! I tried both of your suggestions without any luck. [image: :face_with_diagonal_mouth:] Below is a sample of the updated code. The jest output is attached as an image. The test made it to “5) Appended div to body” but didn’t make it to “6) Done initializing WebViewer” or “documentLoaded”.

import WebViewer, { WebViewerInstance, WebViewerOptions } from "@pdftron/webviewer";
import "jest-canvas-mock";
import { extractTitle } from "./parser";

const testPdfPath = "./src/assets/sample.pdf";
const licenseKey = "demo:";

async function setupInstance(): Promise<WebViewerInstance> {
 console.log("1 In setupInstance()");
 const options: WebViewerOptions = {
 filename: "sample.pdf",
 fullAPI: true,
 initialDoc: testPdfPath,
 licenseKey,
 loadAsPDF: true,
 path: testPdfPath,
 };
 console.log("2) Defined options");
 const div = document.createElement("div");
 console.log("3) Created div");
 div.id = "test";
 console.log("4) Assigned ID");
 const body = document.querySelector("body");
 if (body === null) {
 console.log("5) Unable to append div to body: Body is null");
 } else {
 body.appendChild(div);
 console.log("5) Appended div to body");
 }

 const instance = await WebViewer(options, div);
 console.log("6) Done initializing WebViewer");

 return instance;
}

describe("extractTitle", () => {
 it("correctly finds the title of a simple document", async () => {
 // Arrange
 const expected = "PDFTron Sample PDF Text Tag Document 2";
 const instance = await setupInstance();

 instance.Core.documentViewer.addEventListener("documentLoaded", async () => {
 console.log("documentLoaded");
 const doc = await instance.Core.documentViewer.getDocument().getPDFDoc();
 const page = await doc.getPage(1);
 const txt = await instance.Core.PDFNet.TextExtractor.create();
 const rect = await page.getCropBox();

 txt.begin(page, rect);
 const line = await txt.getFirstLine();

 // Act
 const actual = await extractTitle(line);

 // Assert
 expect(actual).toEqual(expected);
 });
 });
});

[image: Screen Shot 2022-05-06 at 4.20.06 PM]
Screen Shot 2022-05-06 at 4.20.06 PM822×647 76.7 KB

 Andrew_Yip

 May 12, 2022, 2:17am

 5

 Hi Ben,

Sorry for the delayed response, it looks like the issue is a bit more complex than I first thought. What does your testing framework look like? Are you using something like Puppeteer or Selenium? How are you handling the “window” object, are you mocking it? Also what are you planning to test, is it mostly APIs for processing the documents or is it more like integration testing to make sure everything works?

One issue with testing WebViewer is that it dynamically fetch resources (it does it from the “path” you pass in, so that path need to be publicly accessible). I think the current issue could be WebViewer is unable to fetch those resources. If you are using a testing framework that has a “non headless” mode (so you can see what is happening), you can check the network tab to see if WebViewer is able to fetch resources.

One approach would be to host WebViewer somewhere, (so running something like "npm run start" before running your test or use a test suit that can do that for you). Also if your test suit is able to, you can navigate to a page with WebViewer, but this start feeling like integration testing instead of unit testing

Let me know if the above help and more information about your test suite. Thank you

Best Regards,

Andrew Yip

Software Developer

PDFTron Systems, Inc.

 [image:]

 PDFTron

 [image:]

PDFTron - PDF SDK with 100s of Features, Fast Setup

 Embed our PDF SDK to add 100's of features to your web, mobile, desktop app. Annotate, View, Convert, Form Fill, Create, Edit, Manipulate, Parse, Extract, Sign.

 Highlight content within PDF rendered through PDFTron

 ben

 May 12, 2022, 8:39pm

 6

 Hello Andrew,

Right now, we’re just doing standard unit testing (running under NodeJS) with Jest, but it sounds like we’ll need to do something with a headless browser to be able to test some of the code.

I’ll regroup with the team and let you know if I have any other questions.

Thanks,

Ben

 Andrew_Yip

 May 17, 2022, 10:41pm

 7

 Hello Ben,

Feel free to let us know if you have any other questions.

Internally we are able to unit test each component of our code (i.e. AnnotationHistoryManager, DocumentViewer, etc) and have a set up for integration testing (we use a headless browser for this). However, for you, your unit testing would be more similar to what we are doing for our integration testing (since the code has been minified and compiled together). So you’ll probably need a headless browser.

For unit testing, we have a guide for running our web SDK without the viewer, which might be helpful for unit testing if you are testing processing and parsing documents without needing to render them. You’ll still need to run Core.setWorkerPath('path to worker resources'); to a valid path for our SDK to retrieve resources

Run without viewer

Also, I noticed that you are using some of our “full API” (getPDFDoc) and Core.PDFNet APIs. If you are mainly unit testing processing and parsing documents with our PDFNet APIs, you could make your test suite with our node.js SDK (in this case you don’t need to have a headless browser)

node js SDK

The SDKs aren’t exactly the same (one is running in the browser environment while the node js one will be server-side) but the APIs are similar enough that you could use it to check if the code you’re using on the client-side will be doing what you expect. Note that our client-side SDK has more classes since it tries to simplify the full API with wrappers

Best Regards,

Andrew Yip

Software Developer

PDFTron Systems, Inc.

 jameschoi

 November 26, 2023, 10:58pm

 8

 How does the jest.config.js file look like? How does it need to configured such that static js files used by can be fetched within jest tests?

	

 Home

	

 Categories

	

 FAQ/Guidelines

	

 Terms of Service

	

 Privacy Policy

 Powered by Discourse, best viewed with JavaScript enabled

