

 Apryse Community

 How do I maintain small file size after PDF processing and page 	editing using PDFNet SDK?

 Technical Support

 Apryse SDK

 Aaron_Gravesdale

 November 14, 2009, 1:10am

 1

 Q: I’m noticing that my PDF files are bigger after I added some PDF

transformation using PDFNet SDK (http://www.pdftron.com/pdfnet).

Basically, I’m concatenating documents, modifying text, changing text

colors, scaling pages and overlaying pages. Every time I need to

modify a page I insert a new page, copy/modify elements to the new

page from the old then delete the old page. Is there an issue with

doing that frequently? I am using ImportPages, sub-setting fonts,

caching fonts for re-use, and saving documents with the ‘remove

unused’ option. The code below shows what I’m doing before and after

making page changes:

// Create new page

Page page = m_doc.PageCreate(m_page.GetMediaBox());

page.SetRotation(m_page.GetRotation());

// Do stuff like modifying text, changing text color, scaling and

overlaying page

// Replace current page with new

PageIterator iterPage = m_doc.GetPageIterator(iPage);

m_doc.PageInsert(iterPage, page);

m_doc.GetSDFDoc().Swap(m_page.GetSDFObj().GetObjNum(), page.GetSDFObj

().GetObjNum());

A: How are you saving the document (i.e. what are the flags that you

pass in Save())? Also could it be that there are dead references

(possibly from some annotations or bookmarks) that are pointing to old

pages and are keeping them in memory [for more info please see

http://groups.google.com/group/pdfnet-sdk/browse_thread/thread/5282fd17371ee806#

- "How do I detect broken links and dead object references in my PDF

files? "]?

 Aaron_Gravesdale

 November 14, 2009, 1:15am

 2

 Q: I use the e_remove_unused and e_linearized flags when saving. The

code I included in my last email was incomplete. It also copies

annotations from the old page to the new as shown below. Could that

explain the “dead references” from annotations you mention? What else

could I be doing to create dead references?

Also, I’ve discovered that my “Transform” and “Overlay” logic seem to

account for a lot of the large PDF file size increase. I’ve attached

the code for both. The “Transform” function scales and positions a

page and the “Overlay” function places a page from another document

onto the current page. Is there a problem with my approach or a better

way to do these?

public void Overlay(Page page, double dblX, double dblY,

double dblScale)

{

try

{

ElementBuilder builder = new ElementBuilder();

ElementWriter writer = new ElementWriter();

writer.Begin(m_page);

builder.Reset();

// Create form that contains overlay page contents

Element element = builder.CreateForm(page, m_doc);

// Get current coordinate space for page (accounts for

page rotation)

Matrix2D mtxPage = m_page.GetDefaultMatrix();

Matrix2D matrix = mtxPage * new Matrix2D(dblScale, 0, 0, dblScale,

dblX, dblY);

element.GetGState().SetTransform(matrix);

writer.WritePlacedElement(element);

// Finish writing to page

writer.End();

writer.Dispose();

}

catch(Exception ex)

{

throw PDFManager.Exception(“Unable to overlay page.”,

ex);

}

… Transform() is similar …

A: Could it be that the problem is caused because pages are

“Transform” -ed and “Overlay” –ed one at a time.

In order to keep the file size low you could import all overlay/

transform pages into the target document (without inserting them into

document page sequence) and then calling builder.CreateForm

(imported_page).

In case the suggested change to your “Transform” and “Overlay”

function does not help with the file size, could you please send us a

(relatively small) test file generated with your application. Using

CosEdit (http://www.pdftron.com/cosedit) we could inspect the file and

determine a possible source of error.

Regarding a ‘dead reference’, I mean a link/connection from an object

in the current page sequence (such as an annotation, bookmark, etc) to

a page (or some other object) which is no longer in page sequence.

This is similar in concept to garbage collection in .NET. If there are

still active references to a given object it will not be garbage

collected until the reference is removed.

 Aaron_Gravesdale

 November 14, 2009, 1:18am

 3

 I assume that you will place the overlay content (i.e. header/footer)

on many pages in the target document.

In order to share the overlay between all page instances you should

import the source page into the target document only once

(builder.CreateForm(page, m_doc)).

In addition, if you need to import more than one page from the source

document you should first import the entire page set in one swoop

using pdfdoc.ImportPages(). This will guarantee that all shared

resources (such as fonts) between overlay page set are being

preserved.

The following pseudo-code assumes that you are importing only a single

page overlay:

static ElementBuilder builder = null;

static ElementWriter writer = null;

static Obj overlay_form_xobject = null;

void MyMain(Page overlay_page,)

{

 if (builder == null) { builder = new ElementBuilder(); }

 if (writer == null) { writer = new ElementWriter(); }

 // Cache form XObject for repeated use across different pages.

 if (overlay_form_xobject == null) {

 overlay_form_xobject = builder.CreateForm(overlay_page,

m_doc).GetXObject();

 }

...

 Overlay(m_doc.GetPage(1), form_xobject, X, Y, Scale);

 Overlay(m_doc.GetPage(2), form_xobject, X, Y, Scale);

}

public void Overlay(Page dest_page, Obj form_xobject, double dblX,

double dblY, double dblScale)

{

 try

 {

 writer.Begin(dest_page);

 builder.Reset();

 // Create form that contains overlay page contents

 Element element = builder.CreateForm(overlay_form_xobject);

 // Get current coordinate space for page (accounts for page

rotation)

 Matrix2D mtxPage = m_page.GetDefaultMatrix();

 Matrix2D matrix = mtxPage * new Matrix2D(dblScale, 0, 0, dblScale,

dblX, dblY);

 element.GetGState().SetTransform(matrix);

 writer.WritePlacedElement(element);

 // Finish writing to page

 writer.End();

 }

 catch(Exception ex) {

 throw PDFManager.Exception("Unable to overlay page.", ex);

 }

}

 Aaron_Gravesdale

 November 14, 2009, 2:00am

 4

 Q: Reusing form XObjects helps somewhat, however the transtormed PDFs

are still much larger than the original documents.

I use the following function to place scaled and translated PDF page

on a new page. Can you please suggest any other ways to decrease the

file size of generated documents:

public void Transform(double dblX, double dblY, double

dblScale)

{

try

{

// Create new page

Page page = m_doc.PageCreate(m_page.GetMediaBox());

page.SetRotation(m_page.GetRotation());

// Get current page index

int iPage = m_page.GetIndex();

ElementBuilder builder = new ElementBuilder();

ElementWriter writer = new ElementWriter();

writer.Begin(page);

builder.Reset();

// Create form that contains page contents

Element element = builder.CreateForm(m_page, m_doc);

Matrix2D matrix = new Matrix2D(dblScale, 0, 0, dblScale, dblX,

dblY);

element.GetGState().SetTransform(matrix);

writer.WritePlacedElement(element);

// Finish writing to page

writer.End();

writer.Dispose();

// Copy annotations to new page and position based on

scaling

int iCount = m_page.GetNumAnnots();

for (int i = 0; i < iCount; i++)

{

Annot annotOld = m_page.GetAnnot(i);

Annot annot = new Annot(annotOld.GetSDFObj());

Rect rect = annot.GetRect();

double dblWidth = rect.Width();

double dblHeight = rect.Height();

// Shift and scale rect x-coordinate

rect.x1 = dblX + (rect.x1 * dblScale);

rect.x2 = rect.x1 + (dblWidth * dblScale);

// Shift and scale rect y-coordinate

rect.y1 = dblY + (rect.y1 * dblScale);

rect.y2 = rect.y1 + (dblHeight * dblScale);

// See if changing scale

if (dblScale != 1.0)

{

Annot.BorderStyle style = annot.GetBorderStyle

();

if (style.width > 0)

{

// Scale border width (but minimum is one)

dblWidth = style.width * dblScale;

dblWidth = ((dblWidth - Math.Floor

(dblWidth) > 0.5) ? Math.Ceiling(dblWidth) : Math.Floor(dblWidth));

style.width = Math.Min(1, (int) dblWidth);

annot.SetBorderStyle(style);

}

}

// Change rectangle

annot.SetRect(rect);

page.AnnotPushBack(annot);

}

// Replace current page with transformed page

PageIterator iterPage = m_doc.GetPageIterator(iPage);

m_doc.PageInsert(iterPage, page);

m_doc.GetSDFDoc().Swap(m_page.GetSDFObj().GetObjNum(),

page.GetSDFObj().GetObjNum());

m_doc.PageRemove(m_doc.GetPageIterator(iPage));

// Use new page

m_page = m_doc.GetPage(iPage);

}

catch(Exception ex)

{

throw PDFManager.Exception(“Unable to transform

page.”, ex);

}

}

A: The increase in file size from ‘Transformed.pdf’ to

‘TransformedOverlayed.pdf’ is solely due to repeated form xobjects (as

discussed in the previous email).

The increase in file size from ‘Original.pdf’ to ‘Transformed.pdf’ is

due to dead references (as expected).

To detect this we wrote a utility function (attached) that goes

through the entire document and reports any references to page objects

that are no longer in the main page sequences (i.e. dead references).

Running this function on ‘Transformed.pdf’ produces the following

output:

Dead reference: 303 in 25

Dead reference: 275 in 111

Dead reference: 313 in 322

Dead reference: 313 in 323

Dead reference: 313 in 324

Dead reference: 313 in 325

Dead reference: 313 in 326

Dead reference: 313 in 327

Dead reference: 313 in 328

Dead reference: 313 in 329

Using CosEdit (http://www.pdftron.com/pdfcosedit) we found that the

culprit is that some annotation dictionaries still have a reference to

the page through its “P” entry.

To fix this problem you could either erase optional “P” entry in all

annotations (i.e. annot.GetSDFObj().Erase(“P”)) or update it to point

to the new page (annot.GetSDFObj().Put(“P”, new_page.GetSDFObj())).

Please let me know if this helps.

 How can I replace third image in one page?

 Aaron_Gravesdale

 November 14, 2009, 2:01am

 5

 Q: Maybe I misunderstand but I’m not comfortable with this solution.

It seems to me that the question shouldn’t be how to deal with dead

references after the fact but how to prevent them in the first place.

What is it about my Transform logic (in particular, the call to Swap)

that causes the dead references and the large file size? It seems that

grinding through the document and locating/fixing dead references

would be expensive. Every time I modify a page by doing the usual

insert/remove page routine I would have to check the document for

annotations that need to be updated to point to the new page. Am I

correct?

A: Dead references are caused because you are cloning annotations from

an old page to a new page. Some of the cloned annotations are still

pointing to the old page via the optional “P” (for ‘parent page’)

entry.

how to prevent them in the first place?

Instead of cloning annotations, you could create them from scratch and

set all the properties based on the values from old annotations. Of

course, this is lots of work and your current approach minimizes the

number of lines of code you need to write:

page.AnnotPushBack(new Annot(annot.GetSDFObj())); page.GetAnnot

(i).GetSDFObj().Erase(“P”); <---- !

We will probably add this step within AnnotPushBack() in a future

PDFNet version.

It seems that grinding through the document and locating/fixing dead

references would be expensive.

Every time I modify a page by doing the usual insert/remove page

routine I would have to check the document for annotations that need

to be updated to point to the new page. Am I correct?

The provided sample code is intended for troubleshooting and debugging

this type of issues. You would probably not use it in the production

code.

	

 Home

	

 Categories

	

 FAQ/Guidelines

	

 Terms of Service

	

 Privacy Policy

 Powered by Discourse, best viewed with JavaScript enabled

