

 Apryse Community

 How are clipping paths handled by PDFNet SDK?

 Technical Support

 Apryse SDK

 Aaron_Gravesdale

 November 16, 2007, 2:26am

 1

 Q:

I am not sure if I understand the way clipping paths are being parsed

by PDFTron. According to the PDF spec, a clipping path operator can

appear before a painting operator, but is affects the subsequent

painting operators. Since the painting operators, with the exception

of shading, are parsed into a Path element is this taken into

consideration when the path elements are placed into PDFDoc?

Also, according to the documentation I have read, the save state and

restore state operators correspond directly with the group_begin and

group_end elements. Is this correct?

So then what is the scoping of the clipping paths in PDFTron? If I get

a group_begin, a clipping path, and a group_end, does the group_end

end the scope and effect of that clipping path? What if I have the

following:(printed from an actual document)

 Processing e_group_begin

 Processing e_path

 isClippingPath (A)

 Processing e_path

 isClippingPath (B)

 Processing e_path

 isClippingPath (C)

 Processing e_group_begin

(POINT 1)

 Processing e_group_end

(POINT 2)

 Processing e_group_end

1) Assume that there is no clipping path at POINT 1, then are clipping

paths A, B, and C are in scope at POINT 1? According to the PDFSpec,

these should be pushed off with the graphics state when the q operator

is issued (ie a group_begin).

2) What if the inner e_group_begin element contained a clipping path,

would that clipping path be in scope and not the others?

3) At point 2, are clipping paths A, B, and C in scope?

A:

The description of how clipping paths are handled in PDF can be found

in Section 4.4.3 'Clipping Path Operators' of PDF Reference Manual

(www.pdftron.com/downloads/PDFReference16.pdf).

The graphics state contains a current clipping path that limits the

regions of the page affected by painting operators. The initial

clipping path includes the entire page. Clipping Path Operators can be

used to reset the clipping path in the graphics state to the

intersection of the current clipping path and the newly constructed

path.

There is no way to enlarge the current clipping path or to set a new

clipping path without reference to the current one. However, since the

clipping path is part of the graphics state, its effect can be

localized to specific graphics objects by enclosing the modification

of the clipping path and the painting of those objects between a pair

of e_group_begin / e_group_end elements (q and Q operators).

the save state and restore state operators correspond directly

with the group_begin and group_end elements. Is this correct?

Correct, e_group_begin element corresponds to 'q' operator and

e_group_end element corresponds to 'Q' operator.

Please keep in mind that ElementReader does not maintain the current

clip stack (for efficiency reasons). This does not prevent an

application from keeping its own clip stack that reflects the current

graphics state.

In your example:

1 Processing e_group_begin

2 Processing e_path

3 isClippingPath (A)

4 Processing e_path

5 isClippingPath (B)

6 Processing e_path

7 isClippingPath (C)

8 Processing e_group_begin

9 (POINT 1)

10 Processing e_group_end

11 (POINT 2)

12 Processing e_group_end

13 (POINT 3)

Assuming that your application needs to maintain the current clipping

stack, you can declare a List variable that contains a list of paths.

When page processing starts, push a list with a page bounding box on

the stack.

When the first e_group_begin element is encountered, you need to clone

the topmost element on the clip stack (this means that the clip stack

would contain two list elements each containing a page crop box).

When the first clipping path is encountered it is added to the current

clip path (i.e. the last list of paths on the clip stack). This means

that the current clip path is the intersection of the page media box

and the new clip path.

When the second and third clipping paths are encountered they are

similarly added to the topmost list of clipping paths. The current

clip path is the intersection of all three paths and the page media

box.

When the second e_group_begin element is encountered, you need to

clone the topmost element on the clip stack (this means that the clip

stack would now contain three list elements: the first containing a

page crop box, and the second and third containing four identical

paths).

When Point1 is drawn the application needs to check if this point is

located in the current clip path (the intersection of 4 paths).

When the first e_group_end element is encountered the last list of

path elements on the clip stack is deleted, and the current clip path

is the previous list of path elements (in this case it contains

identical information)

When Point2 is drawn the application needs to check if this point is

located in the current clip path (still a list of four paths).

When the second e_group_end element is encountered the last list of

path elements on the clip stack is deleted, and the current clip path

becomes again the page media box.

When Point3 is drawn the application needs to check if this point is

located in the current clip path (which is now the page media box).

	

 Home

	

 Categories

	

 FAQ/Guidelines

	

 Terms of Service

	

 Privacy Policy

 Powered by Discourse, best viewed with JavaScript enabled

