

 Apryse Community

 Efficient merging of large PDF documents.

 Technical Support

 Apryse SDK

 Aaron_Gravesdale

 May 25, 2011, 6:10pm

 1

 Q: I need to verify that large PDFs can be created without choking the

system with CPU/RAM consumption. This test reads pages from existing

PDFs and adds them to a final PDF. With the straight forward code, the

document is kept in memory, during creation/update, and saved at the

end with the "Save" function.

How can I create large PDF files without consuming lots of memory? Is

there a way to connect a document to a file stream right at the

creation stage so that all writes to it go straight to disk? Any other

suggestions?

A: By default, PDFNet is cashing most of the written document to disk

(unless you explicitly disable disk caching using

PDFNet.SetDsikCaching(false)). As a result PDFNet can be used to

efficiently create very large documents without much memory usage.

How are you creating a document? A code snippet would help us to

better understand the problem. Are you explicitly disposing large

objects such as PDFDoc, ElementBuilder/ElementWriter etc?

 Aaron_Gravesdale

 May 25, 2011, 6:12pm

 2

 Q: I am attaching the code snippet for your review. I noticed a

dramatic improvement in memory usage by using the "ImportPages"

function to get all pages at once, rather than reading one page at a

time and inserting to the new document. The one thing I am still

confused over is why we still have to insert pages into the new

document, once "ImportPages" is already called from the new document.

Your code samples are doing the same thing as well.

I tried to disable disk caching, and saw that memory usage increased.

This is quite obvious though. Good thing that caching is enabled by

default.

A: When page(s) are imported to the target document using

"ImportPages" they are not automatically inserted in the page document

sequence, since a user may have other plans (e.g. to place imported

pages on a target layout - as shown in ImpositionTest etc).

In case you simply want to merge/split PDF documents you could use

doc.InsertPages()/MovePages() methods. For example:

// Sample 1 - Split a PDF document into multiple pages

using (PDFDoc in_doc = new PDFDoc("newsletter.pdf")) {

 in_doc.InitSecurityHandler();

 int page_num = in_doc.GetPageCount();

 for (int i = 1; i <= page_num; ++i) {

 using (PDFDoc new_doc = new PDFDoc()) {

 new_doc.InsertPages(0, in_doc, i, i, PDFDoc.InsertFlag.e_none);

 new_doc.Save("newsletter_split_page_" + i + ".pdf",

SDFDoc.SaveOptions.e_remove_unused);

 }

 }

}

// Sample 2 - Merge several PDF documents into one

using (PDFDoc new_doc = new PDFDoc()) {

 new_doc.InitSecurityHandler();

 int page_num = 15;

 for (int i = 1; i <= page_num; ++i) {

 using (PDFDoc in_doc = new PDFDoc(output_path +

"newsletter_split_page_" + i + ".pdf")) {

 new_doc.InsertPages(i, in_doc, 1, in_doc.GetPageCount(),

PDFDoc.InsertFlag.e_none);

 }

 }

 new_doc.Save("newsletter_merge_pages.pdf",

SDFDoc.SaveOptions.e_remove_unused);

}

I noticed that in your code you are using ElementBuilder/ElementWriter

to stamp PDF pages. You can alternatively use pdftron.PDF.Stamper (as

shown in Stamper sample). In either case you should call Dispose() [or

use C# 'using keyword'] to release memory as soon as possible:

var writer = new ElementWriter();

var builder = new ElementBuilder();

...

writer.Dispose();

builder.Dispose();

or

using (var writer = new ElementWriter()) {

 ...

}

There are some other tricks that can be used to keep the memory

requirements even lower (e.g. closing and reopening the target

document in between merge operations), however I am not sure if it is

worth the trouble.

On May 25, 11:10 am, Support <supp...@pdftron.com> wrote:

Q: I need to verify that large PDFs can be created without choking the

system with CPU/RAM consumption. This test reads pages from existing

PDFs and adds them to a final PDF. With the straight forward code, the

document is kept in memory, during creation/update, and saved at the

end with the "Save" function.

How can I create large PDF files without consuming lots of memory? Is

there a way to connect a document to a file stream right at the

creation stage so that all writes to it go straight to disk? Any other

suggestions?

A: By default, PDFNet is cashing most of the written document to disk

(unless you explicitly disable disk caching using

PDFNet.SetDsikCaching(false)). As a result PDFNet can be used to

efficiently create very large documents without much memory usage.

How are you creating a document? A code snippet would help us to

better understand the problem. Are you explicitly disposing large

objects such as PDFDoc, ElementBuilder/ElementWriter etc?

 Convert to/from stream

	

 Home

	

 Categories

	

 FAQ/Guidelines

	

 Terms of Service

	

 Privacy Policy

 Powered by Discourse, best viewed with JavaScript enabled

